

OPC Connectivity
using Java

Copyright and all intellectual property belongs to Brockhaus Group ​ 1

What is OPC?

Why OPC?
Some examples of application

BOSCH
ABB

Case Study: Java-based OPC Client implementation
DCOM configuration
Utgard

Eclipse configuration
Reading tags
Writing tags

Summary and further steps

Copyright and all intellectual property belongs to Brockhaus Group ​ 2

I​n 2011 at the Hannover Fair the expression “Industrie 4.0” appeared by first time. It refers to the
fourth industrial revolution, involves the employment of information systems and electronics in the
manufacturing automation processes and comprises the technological concepts of cyber-physical
systems​, the Internet of Things and the Internet of Services​. In turn, it allows the development of the
so-called Smart Factory, whose six design principles are:

● I​nteroperability: the ability of ​cyber-physical systems (i.e. workpiece carriers, assembly
stations and products), humans and Smart Factories to connect and communicate with each
other via the​ ​Internet of Things​ and the​ ​Internet of Services

● Virtualization: a virtual copy of the Smart Factory which is created by linking sensor data
(from monitoring physical processes) with virtual plant models and simulation models

● Decentralization: the ability of ​cyber-physical systems within Smart Factories to make
decisions on their own

● Real-Time Capability: the capability to collect and analyse data and provide the derived
insights immediately

● Service Orientation: offering of services (of ​cyber-physical systems​, humans or Smart
Factories) via the​ ​Internet of Services

● Modularity: flexible adaptation of Smart Factories to changing requirements by replacing or
expanding individual modules

 --- Source: Wikipedia

Copyright and all intellectual property belongs to Brockhaus Group ​ 3

https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Services
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Things
https://en.wikipedia.org/wiki/Internet_of_Services
https://en.wikipedia.org/wiki/Internet_of_Services
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Cyber-physical_system
https://en.wikipedia.org/wiki/Internet_of_Services
https://en.wikipedia.org/wiki/Internet_of_Services

What is OPC?

● “OPC is the interoperability standard for the secure and reliable exchange of data in the
industrial automation space and in other industries. It is platform independent and ensures the
seamless flow of information among devices from multiple vendors. The OPC Foundation is
responsible for the development and maintenance of this standard.” - OPC Foundation 2015

● “Open Platform Communications (OPC) is a series of standards and specifications for industrial
telecommunication. An industrial automation industry task force developed the original
standard in 1996 under the name OLE for Process Control (Object Linking and Embedding for
Process Control). OPC specifies the communication of real-time plant data between control
devices from different manufacturers.” - Wikipedia 2015

● “OPC is a widely accepted industrial communication standard that enables the exchange of

data between multi-vendor devices and control applications without any proprietary
restrictions. An OPC server can communicate data continuously among PLCs on the shop floor,
RTUs in the field, HMI stations, and software applications on desktop PCs. Even when the
hardware and software are from different vendors, OPC compliance makes continuous
real-time communication possible. It is open connectivity in industrial automation and the
enterprise systems that support the industry. Interoperability is assured through the creation
and maintenance of non-proprietary open standards specifications. The first OPC standard
specification resulted from the collaboration of a number of leading worldwide automation
suppliers working in cooperation with Microsoft. Originally based on Microsoft's OLE COM and
DCOM technologies, the specification defined a standard set of objects, interfaces, and
methods for use in process control and manufacturing automation applications to facilitate
interoperability. The COM/DCOM technologies provided the framework for software products to
be developed. There are now hundreds of OPC Data Access servers and clients.” - Kepware
Technologies 2015

Copyright and all intellectual property belongs to Brockhaus Group ​ 4

https://en.wikipedia.org/wiki/Telecommunication

Why OPC?
Initially in the process control industry, it arose the following problem (custom driver problem). It was
necessary to share data between devices of different vendors. Sometimes this multi-vendor
interconnectivity was not achieved due to proprietary protocols and hardware issues. When it was
possible, it led to expensive custom solutions and difficult to maintain. Each application required a
device or protocol specific driver to allow it to communicate with each respective device. Drivers were
not re-usable between applications because each application used its own data format(s).

OPC offers a simple, standards based, solution for this problem. It introduces an abstraction layer
between devices and applications to allow data to pass between them without them being aware of
each other’s internal data representations.

Copyright and all intellectual property belongs to Brockhaus Group ​ 5

OPC Specifications define how OPC Clients and OPC Servers communicate but leave the OPC
Client-Application and OPC Server-Device communications open since this depends on the Application
and Devices being used.

This standardized data exchange between the OPC Clients and OPC Servers allows any OPC Client to
communicate with any other OPC Server. Since the OPC Server takes care of translating Native device
communications into an OPC format and the OPC Client does the same on the Application side;
Applications and Devices can share data between each other without having to know each other’s
native protocols or data formats.

Copyright and all intellectual property belongs to Brockhaus Group ​ 6

Copyright and all intellectual property belongs to Brockhaus Group ​ 7

Some examples of applications

Such as it mentioned above, the OPC standard makes it possible the connection and communication
between the different production devices, humans and Smart Factories in order to facilitate the
interoperability. Below some current examples of application are commented briefly.

BOSCH

Bosch has developed the Building Integration System (BIS), providing an integrated and OPC-based
solution in order to manage the security issue in buildings. More information about it can be found
here​.

Copyright and all intellectual property belongs to Brockhaus Group ​ 8

http://www.pentgon.co.za/our-products/building-integration-system/23

ABB

ABB (ASEA Brown Boveri), one of the world leading companies in robotics and the power and
automation technology areas, also bet on the OPC standard usage for their solutions.

The schema shows five RVT controllers (Power Factor controllers) as Modbus slave devices connected
to the Matrikon OPC Server for Modbus. Different OPC Clients can interact with the OPC Server.

Case Study: Java-based OPC Client implementation

After the above concepts presentations, it is about time to show the connectivity between an OPC
Server, ​MatrikonOPC Server for Simulation and Testing in this case, and an OPC Client (Java-based
solution called Utgard). Once installed the server, the steps described below are necessary.

Copyright and all intellectual property belongs to Brockhaus Group ​ 9

https://www.matrikonopc.com/products/opc-drivers/opc-simulation-server.aspx

DCOM configuration

Distributed COM (DCOM) is a Microsoft technology that provides Windows applications with the ability
to connect from one computer to another on a LAN, a WAN, or an Internet connection. For example,
DCOM allows the OPC client application to communicate from one computer to the OPC server on
another computer.
DCOM can be quite potent and enable many interesting applications. However it is important to
understand the details to ensure OPC works properly using DCOM. The DCOM tutorial, corresponding
to the operative system installed in your equipment, can be found in the ​website of MatrikonOPC.
Although this process can be a bit long, it is important to follow all the instructions, especially
deactivate the Windows firewall.

Copyright and all intellectual property belongs to Brockhaus Group ​ 10

http://www.matrikonopc.com/dcom-configuration-opc.aspx

Packed along with MatrikonOPC Server for Simulation and Testing, there is an application, called
MatrikonOPC Explorer, which is a OPC Client with functionality for testing and troubleshooting OPC
servers and OPC connections.

Copyright and all intellectual property belongs to Brockhaus Group ​ 11

Utgard

The most common OPC specification is OPC Data Access (OPC DA), which is used to read and write
real-time data. ​Utgard is the OPC Client part implementation of the OPC DA 2.0 interface. Therefore, it
does not work with any ​OPC Unified Architecture (OPC UA) setup. Below are listed the prerequisites on
the development computer:

● The OPC Server should be installed in a Windows computer (note that Home Editions of
Windows might not work due to restrictions on the Windows operating system)

● JDK (6 or 7)
● Eclipse 3.5+ or 4.x

In the following sections, the Eclipse basic configuration for Utgard as well as tags’ writing and reading
Java code examples will be shown.

Eclipse configuration

As first step, it is necessary to download a set of libraries:

❏ Utgard binaries
❏ jinterop binaries

Copyright and all intellectual property belongs to Brockhaus Group ​ 12

https://en.wikipedia.org/wiki/OPC_Data_Access
http://openscada.org/projects/utgard/
https://en.wikipedia.org/wiki/OPC_Unified_Architecture
http://download.openscada.org/utgard/R/1.0.0/org.openscada.utgard.sdk-R.1.0.0.zip
http://download.openscada.org/jinterop/R/1.0.0/org.openscada.jinterop.sdk-R.1.0.0.zip

❏ External binaries

After starting Eclipse and creating a project, the following jar files, corresponding to the libraries
mentioned above, should be put into a folder lib and added to the build path.

External binaries

● slf4j.api_1.6.4.jar

● ch.qos.logback.classic_1.0.0.jar

● ch.qos.logback.core_1.0.0.jar

● org.openscada.external.jcifs_1.2.25.201303051448.jar

jinterop binaries

● org.openscada.jinterop.core_2.0.8.201303051454.jar

● org.openscada.jinterop.deps_1.0.0.201303051454.jar

Utgard binaries

● org.openscada.opc.dcom_1.0.0.201303051455.jar

● org.openscada.opc.lib_1.0.0.201303051455.jar

Reading tags

A Saw-toothed signal is created by the Matrikon OPC Server for Simulation and Testing.

The procedure for it requires:

1. Open the server and click on the icon Tag of the icons bar.

Copyright and all intellectual property belongs to Brockhaus Group ​ 13

http://download.openscada.org/external/R/1.0.0/org.openscada.external.sdk-R.1.0.0.zip

2. A MatrikonOPC Explorer window opens. Select Simulation Items -> Saw-toothed Waves in the
tree structure corresponding to “Available Items in Server ‘Matrikon.OPC.Simulation.1’”. Then,
select Int2 in the drop-down menu corresponding to “Available Tags”. In order to add this tag
to the server, click on the first icon of the icons bar in this window.

Copyright and all intellectual property belongs to Brockhaus Group ​ 14

Once the tag has been added, the MatrikonOPC Explorer is opened and shows the evolution of value
tag.

Copyright and all intellectual property belongs to Brockhaus Group ​ 15

The following code summary will connect to the server and show its value each second (1000 ms). A
detailed copy of it can be found at ​GitHub​.

package​ com​.​matrikonopc​.​utgard​;
import​ …

 ​public​ ​class​ ​UtgardReader
 {
 ​static​ ​ConnectionInformation​ ci ​=​ ​new​ ​ConnectionInformation​();

 ​static​ ​Server​ server;
 ​static​ ​String​ itemId;

public​ ​static​ ​void​ main​(​String​[]​ args​)​ ​throws​ ​Exception
{

 init​();
 connect​();
 doRead​();

}
 }

public​ ​static​ ​void​ init​()​ {...}

public​ ​static​ ​void​ connect​()​ ​throws​ ​IllegalArgumentException​,​ ​UnknownHostException​,
AlreadyConnectedException​ {...}

public​ ​static​ ​void​ doRead​()​ ​throws​ ​IllegalArgumentException​,​ ​UnknownHostException​,
NotConnectedException​,​ ​JIException​,​ ​DuplicateGroupException​,​ ​AddFailedException​,
InterruptedException​ {...}

Copyright and all intellectual property belongs to Brockhaus Group ​ 16

https://github.com/brockhaus-gruppe/OPCConnectivity/blob/master/com/matrikonopc/utgard/UtgardReader

The output looks like

...​snip​...

ago ​21​,​ ​2015​ ​6​:​09​:​01​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
ago ​21​,​ ​2015​ ​6​:​09​:​01​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
Value​:​ ​[[​2​]],​ ​Timestamp​:​ vie ago ​21​ ​18​:​09​:​01​ CEST ​2015​,​ ​Quality​:​ ​192​,​ ​ErrorCode​:​ ​00000000
ago ​21​,​ ​2015​ ​6​:​09​:​02​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
Value​:​ ​[[​4​]],​ ​Timestamp​:​ vie ago ​21​ ​18​:​09​:​02​ CEST ​2015​,​ ​Quality​:​ ​192​,​ ​ErrorCode​:​ ​00000000
ago ​21​,​ ​2015​ ​6​:​09​:​02​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
ago ​21​,​ ​2015​ ​6​:​09​:​03​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
ago ​21​,​ ​2015​ ​6​:​09​:​03​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
Value​:​ ​[[​6​]],​ ​Timestamp​:​ vie ago ​21​ ​18​:​09​:​03​ CEST ​2015​,​ ​Quality​:​ ​192​,​ ​ErrorCode​:​ ​00000000
ago ​21​,​ ​2015​ ​6​:​09​:​04​ PM rpc​.​DefaultConnection​ processOutgoing

...​snip​...

Copyright and all intellectual property belongs to Brockhaus Group ​ 17

Copyright and all intellectual property belongs to Brockhaus Group ​ 18

Writing tags

The first step is creating a writing access tag. According to the MatrikonOPC Server for Simulation and
Testing user manual, the items Bucket Brigade are the only ones that can be written. Therefore, a tag
Bucket Brigade.Int2 is created for the purpose of this section. Initially, the integer value tag is 0.

The required procedure comprises the following stages:

1. Open the server and click on the icon Tag of the icons bar.

Copyright and all intellectual property belongs to Brockhaus Group ​ 19

2. A MatrikonOPC Explorer window opens. Select Simulation Items -> Bucket Brigade in the tree
structure corresponding to “Available Items in Server ‘Matrikon.OPC.Simulation.1’”. Then,
select Int2 in the drop-down menu corresponding to “Available Tags”. In order to add this tag
to the server, click on the first icon of the icons bar in this window.

Once the tag has been added, the MatrikonOPC Explorer is opened and shows the initial state of the
tag.

Copyright and all intellectual property belongs to Brockhaus Group ​ 20

The following code schema will write an increasing integer value into the tag each 3 seconds. A
complete code description can be download from ​GitHub​.

package​ com​.​matrikonopc​.​utgard;
import​ java​.​net​.​UnknownHostException;
import ...

public​ ​class​ ​UtgardWriter
{
 ​static​ ​ConnectionInformation​ ci ​=​ ​new​ ​ConnectionInformation​();

 ​static​ ​Server​ server;
 ​static​ ​String​ itemId;

public​ ​static​ ​void​ main​(​String​[]​ args​)​ ​throws​ ​Exception
{

 init​();
 connect​();
 doWrite​();

}

public​ ​static​ ​void​ init​()​ ​{...}

public​ ​static​ ​void​ connect​()​ ​throws​ ​IllegalArgumentException​,​ ​UnknownHostException​,
AlreadyConnectedException {...}

public​ ​static​ ​void​ doWrite​()​ ​throws​ ​InterruptedException​,​ ​IllegalArgumentException​,
UnknownHostException​,​ ​NotConnectedException​,​ ​JIException​,​ ​DuplicateGroupException​,
AddFailedException​ ​{...}

The corresponding output is shown below.

Copyright and all intellectual property belongs to Brockhaus Group ​ 21

https://github.com/brockhaus-gruppe/OPCConnectivity/blob/master/com/matrikonopc/utgard/UtgardWriter

...​snip​...
 ​Recieved​ RESPONSE
<<< Value: [[0]], Timestamp: vie ago 21 18:54:05 CEST 2015, Quality: 192, ErrorCode: 00000000 /
value = 0
ago ​21​,​ ​2015​ ​6​:​54​:​19​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
ago ​21​,​ ​2015​ ​6​:​54​:​19​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
<<< Value: [[1]], Timestamp: vie ago 21 18:54:19 CEST 2015, Quality: 192, ErrorCode: 00000000 /
value = 1
ago ​21​,​ ​2015​ ​6​:​54​:​20​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
ago ​21​,​ ​2015​ ​6​:​54​:​20​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
<<< Value: [[1]], Timestamp: vie ago 21 18:54:19 CEST 2015, Quality: 192, ErrorCode: 00000000 /
value = 1
ago ​21​,​ ​2015​ ​6​:​54​:​20​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
ago ​21​,​ ​2015​ ​6​:​54​:​20​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
<<< Value: [[1]], Timestamp: vie ago 21 18:54:19 CEST 2015, Quality: 192, ErrorCode: 00000000 /
value = 1
ago ​21​,​ ​2015​ ​6​:​54​:​21​ PM rpc​.​DefaultConnection​ processOutgoing
INFORMACI​Ó​N:
 ​Sending​ REQUEST
ago ​21​,​ ​2015​ ​6​:​54​:​21​ PM rpc​.​DefaultConnection​ processIncoming
INFORMACI​Ó​N:
 ​Recieved​ RESPONSE
<<< Value: [[1]], Timestamp: vie ago 21 18:54:19 CEST 2015, Quality: 192, ErrorCode: 00000000 /
value = 1
>>>​ writing value 2
...​snip​...

Copyright and all intellectual property belongs to Brockhaus Group ​ 22

Copyright and all intellectual property belongs to Brockhaus Group ​ 23

Copyright and all intellectual property belongs to Brockhaus Group ​ 24

Summary and further steps

In this paper a brief introduction and presentation of the concepts related to OPC has been made. OPC
solution allows to resolve the custom driver problem, when devices of different vendors coexist in the
same working environment, and facilitate the interoperability between them.
Afterwards, two current examples of OPC technology usage have been presented plainly.
Finally, a case study in which the OPC connectivity between a Client and an Server have been carried
out. For the OPC Server, the chosen option is MatrikonOPC Server for Simulation and Testing. For the
client part, it is used a Java-based implementation called Utgard.

Once this practical example has been succeeded, the later steps should be addressed to the
deployment of real devices (PLCs for examples) connected to OPC Servers and the monitoring of real
variables through OPC Clients.

Copyright and all intellectual property belongs to Brockhaus Group ​ 25

